www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - m+n|mn
m+n|mn < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

m+n|mn: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 Do 12.11.2009
Autor: Vic_Burns

Aufgabe
Bestimme alle [mm] \(m,n \in \IN [/mm] für die gilt [mm] \((m+n)|mn. [/mm] (Hinweis: Man sollt m und n als Funktionen ganzer Zahlen k, u, v ausdrücken wobei [mm] \ggT(u,v)=1 [/mm] )

Hallo!
Durch den Hinweis bin ich drauf gekommen, dass man natürliche Zahlen darstellen kann als [mm] m=\(ux+vy [/mm] mit [mm] \ggT(u,v)=1 [/mm] und passenden x,y.

Hab dann versucht das "teilt" in eine Gleichung zu fassen: [mm] \bruch{m+n}{mn}=z [/mm] eine ganze Zahl. Dann die "Funktionen" eingesetzt mit [mm] x_{1,2 }, y_{1,2} [/mm]
Damit kam ich nicht wirklich weit. Hab versucht geschickt auszuklammern, dass ich vielleicht kürzen kann, war aber nix.
Kann mir da jemand nen Tipp geben? Und wozu brauche ich noch das k?
vielen Dank schonmal fürs lesen

ich habe diese Frage in keinem anderen Forum gestellt

        
Bezug
m+n|mn: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Do 12.11.2009
Autor: felixf

Hallo!

> Bestimme alle [mm]\(m,n \in \IN[/mm] für die gilt [mm]\((m+n)|mn.[/mm]
> (Hinweis: Man sollt m und n als Funktionen ganzer Zahlen k,
> u, v ausdrücken wobei [mm]\ggT(u,v)=1[/mm] )
>
>  Hallo!
>  Durch den Hinweis bin ich drauf gekommen, dass man
> natürliche Zahlen darstellen kann als [mm]m=\(ux+vy[/mm] mit
> [mm]\ggT(u,v)=1[/mm] und passenden x,y.

Nein, das ist nicht gemeint. Du sollst $m = k u$, $n = k v$ schreiben mit $k = ggT(m, n)$; dann ist $ggT(u, v) = 1$.

Nun uebersetzt sich die Gleichung in $k (u + v) [mm] \mid k^2 [/mm] u v$, also $(u + v) [mm] \mid [/mm] k u v$.

Jetzt ueberleg dir, dass $ggT(u + v, u) = ggT(u + v, v) = 1$ ist; daraus folgt, dass $u + v$ ein Teiler von $k$ sein muss.

LG Felix


Bezug
                
Bezug
m+n|mn: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:13 Do 12.11.2009
Autor: Vic_Burns

Hi! Erstmal danke für die schnelle Antwort.
Jetzt brauch ich ja nur noch die Bedingungen für m und n, mir will aber irgenwie nichts handliches einfallen. Vielleicht reicht die Bedingung auch schon, dass (u+v) Teiler von k sein muss?
Ich hab daraus zB als Bedingung, dass $m+n$ Teiler einer Quadratzahl sein muss, das muss dann aber der [mm] ggT(m,n)^{2} [/mm] sein. Das ist ja ziemlich unpraktisch.
Aber alle Ansätze, die ich hab führen immer wieder auf diese Bedingung. Gibt es da überhaupt was besseres?


Bezug
                        
Bezug
m+n|mn: Antwort
Status: (Antwort) fertig Status 
Datum: 20:21 Do 12.11.2009
Autor: felixf

Hallo!

> Hi! Erstmal danke für die schnelle Antwort.
>  Jetzt brauch ich ja nur noch die Bedingungen für m und n,
> mir will aber irgenwie nichts handliches einfallen.

Nun, alle Loesungspaare $(m, n)$ kannst du doch beschreiben als [mm] $\{ (k (u + v) u, k (u + v) v) \mid k, u, v \in \IN \}$ [/mm] (die Bedingung $ggT(u, v) = 1$ kannst du auch noch hinzufuegen, musst du aber nicht).

> Vielleicht reicht die Bedingung auch schon, dass (u+v)
> Teiler von k sein muss?

Ja.

>  Ich hab daraus zB als Bedingung, dass [mm]m+n[/mm] Teiler einer
> Quadratzahl sein muss, das muss dann aber der [mm]ggT(m,n)^{2}[/mm]
> sein. Das ist ja ziemlich unpraktisch.

Das versteh ich jetzt nicht.

LG Felix


Bezug
                                
Bezug
m+n|mn: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:32 Do 12.11.2009
Autor: Vic_Burns


> Nun, alle Loesungspaare [mm](m, n)[/mm] kannst du doch beschreiben
> als [mm]\{ (k (u + v) u, k (u + v) v) \mid k, u, v \in \IN \}[/mm]
> (die Bedingung [mm]ggT(u, v) = 1[/mm] kannst du auch noch
> hinzufuegen, musst du aber nicht).

Alles klar, dann lass ich das so. Vielen Dank nochmal.

> >  Ich hab daraus zB als Bedingung, dass [mm]m+n[/mm] Teiler einer

> > Quadratzahl sein muss, das muss dann aber der [mm]ggT(m,n)^{2}[/mm]
> > sein. Das ist ja ziemlich unpraktisch.
>  
> Das versteh ich jetzt nicht.
>  
> LG Felix
>  

[mm]m+n=ku+kv=k(u+v)[/mm] kann ich umformen (wenn [mm](u+v)|k \Rightarrow k=(u+v)z[/mm] ) zu [mm] m+n=\bruch{k^{2}}{z} [/mm] und [mm] z=\bruch{k^{2}}{m+n}=\bruch{ggT(m,n)^{2}}{m+n} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de